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Ergodicity and scars of the quantum cat map in the semiclassical regime
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We study the quantum localization effect of the cat map manifested in the motions of statistical ensembles.
Specifically, the coarse-grained entropy and time-averaged phase space distributions are investigated. For this
purpose, an amended version of the Wigner function on the discretized phase torus is presented. We find that
the time average of the coarse-grained Wigner function is scarred~antiscarred! along some short periodic
orbits, and the heights~depths! of these scars~antiscars! decrease in a linear way with the Planck constant
when the semiclassical limit is approached. The relationship between the scars observed here and those
exhibited in the quasienergy eigenstates is discussed.
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I. INTRODUCTION

Classically, ergodicity plays an important role in studyi
the random behaviors of dynamical systems. One fascina
problem is how it manifests itself in quantum mechanics, a
in what way it is restored in the semiclassical limit (\→0).
A fundamental theorem by Schnirelman, together with th
who came after him@1#, has answered the basic aspect of
question; i.e., for a classically defined operator, its quan
expectations over almost all individual eigenstates conve
to the ergodic, microcanonical averages of its classical co
terpart as\→0. Some authors also studied the rate at wh
they do so@2#.

Later on, a lot of work was done in seeking the quant
characteristics possessed by the classically ergodic syst
One breakthrough was made in 1984 by Bohigaset al. @3#,
who conjectured that in the semiclassical limit the proper
of the spectrum and the eigenstates of a chaotic system
be predicted based on the random matrix theory~RMT! @4#.
This implies Gaussian random eigenfunctions and a stron
repulsive spectrum, whose concrete forms have a de
dence on the symmetry properties of the system. The Ga
ian random form of eigenfunctions implies margina
Schnirelman’s ergodicity~for this reason, the ergodicity im
plied by the RMT is also known as ‘‘strong quantum ergo
icity’’ while that in the sense of Schnirelman is known
‘‘weak quantum ergodicity’’@5#!. The most striking point of
this conjecture is that the RMT is only concerned with t
overall symmetries of the system rather than any deta
dynamics. Hence the RMT’s success in approximating so
quantum descriptions of a chaotic system indicates cle
the leading role played by the symmetries in question. On
other hand, it is thus natural to expect that in more accu
approximations some dynamical aspects of the sys
should be taken into account as well. A well-known exam
is Gutzwiller’s semiclassical trace formula@6#, from which
nonrandom fluctuations in the spectrum of a chaotic sys
can be connected to the short periodic orbits.

Short periodic orbits also have an important effect on
structure of the eigenstates of a chaotic system. This ef
termed ‘‘scarring’’ @7#, is the anomalous enhancement
suppression of eigenstate intensity on or near an unst
1063-651X/2001/63~5!/056208~12!/$20.00 63 0562
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periodic orbit and its invariant manifolds@8#. These en-
hanced or suppressed regions are called scars or anti
@7,9#. They stand out against the monotonous backgroun
the eigenstates derived from RMT and thus constitute
main correction to the latter. Generally they have a width
order\; therefore, their existence would not destroy Schni
lman’s ergodicity.

These important results regarding the quantum ergodi
mainly surround the properties of the spectrum and the in
vidual eigenstates. However, to get a deeper insight into
classical-quantum correspondence of ergodicity, the pro
ties involving many eigenstates at a time need to be stud
as well. In fact, only for such properties does the classic
quantum correspondence have implications@5#. The reason
lies in the essential difference between classical and quan
mechanics, from which a direct classical-quantum comp
son of physical meaning is expected to be performed in
framework of statistical mechanics.

In most cases, however, it would be a very difficult job
cope with the statistical ensembles of a chaotic system.
situation becomes even harder when the deep semiclas
limit and long time evolutions need to be considered. As
result, our knowledge in this regard is still quite limited. F
example, an immediate question one would want answere
whether an even phase-space distribution will be conver
to by a general quantum ensemble apart from the inevita
quantum fluctuations, and if not, whether the phase sp
will be evenly visited in the sense of time average. Th
question will be focused on in this paper.

The model system we adopt is Arnold’s cat map@10#, a
well-known paradigm of classical chaos. It turns out to
ideal for our plan here due to its generality and simplici
Specifically, by using the quantum characteristic functi
@11#, its evolution equation can be transformed into a mu
simpler one, which has been proven to be crucial for b
analytic and numerical work@12,13#, especially related to the
motions of ensembles. If the coarse-graining procedure
involved, this new form evolution equation will allow furthe
simplification of the calculations. Quantum characteris
functions, as shown in this paper, are also important for
fining a new Wigner function for the system whose pha
space is a torus like the cat map.
©2001 The American Physical Society08-1
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We find that a very interesting quantum localization effe
may appear during the evolutions of a wave packet. After
initial relaxation period, the phase space would be eve
distributed up to the randomlike quantum fluctuations
most cases; but surprisingly, at other times some stron
localized structures caused by quantum interference, wh
scales are of the same order of the initial wave packet, wo
emerge from this monotonous background. This is in c
trast with the classical mixing property. In addition, if th
Plank constant is decreased~being divided by a prime num
ber repeatedly!, these structures themselves are kept co
pletely unchanged~except for the times at which they appe
may change greatly!. This is different from the dynamica
localization effect@14,15# which does not survive the sem
classical limit. However, since the average interval betw
the appearances of these localized structures increases\
→0, the time-averaged phase-space distribution will fina
reach that required by the classical ergodicity in the se
classical limit.

Another interesting phenomenon is that when the ini
wave packet is launched on or near a periodic orbit, it
found along not only that one, but also some other perio
orbits in which the time-averaged phase space distribu
protrudes. This suggests that to understand the scars alo
given periodic orbit, it is insufficient to consider only th
information contained in the dynamics of the wave-pac
origins from this single periodic orbit; the information co
tained in the wave-packet dynamics along other periodic
bits must be considered as well. This implies that the sc
ring should be seen as a collective effect to which vario
periodic orbits make their contributions simultaneously
some inseparable way.

This paper is organized as follows. In the next section,
first discuss briefly the quantization of the cat map, and t
we introduce the quantum characteristic function, which
equivalent to the density operator in describing a quan
ensemble. In terms of this, a simple evolution formula for
quantum cat map is derived. Section III presents a new d
nition of the Wigner function for the system whose pha
space is a torus, and its propagator for Arnold’s cat ma
discussed. The quantum interference exhibited in the
tions of an ensemble can be illustrated by simply examin
this propagator. Section IV discusses the coarse-grain
procedure, and Sec. V presents the numerical results. In
VI, we discuss the semiclassical behavior of the time aver
of the coarse-grained Wigner function and the relations
between the scars exhibited in this presentation and th
exhibited in the quasienergy eigenfunctions. A concise su
mary will be found in the final section.

II. QUANTIZATION OF THE CAT MAP

To quantize the cat map, several schemes are curre
available@16–18#. Among them, a general method for qua
tizing a linear map on the torus has been studied in detai
Hannay and Berry@16#. But unfortunately, our model system
does not satisfy the conditions of their formulation. Anoth
scheme, which we shall resort to here, is that once discu
by Balazs and Voros in their study of Baker’s transformat
05620
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@17#. It consists of two steps. The first one is to specify t
kinematics, i.e., the states and the operators that are invo
in the description of the system; and the second is to c
struct the dynamics, i.e., the time evolution operator that a
on them. The latter step can be carried out by a direct a
ogy with the classical dynamics.

Assume the phase space is a torus with unit area. The
that it is compact implies that the number of phase ce
N51/(2p\) is a finite integer that gives the dimension
the state-vector space needed to describe the system
denote such anN-dimensional Hilbert space asH, and con-
struct two orthogonal, complete vector sets$u j &% and $u l̄ &%
with j ,l 50, . . . ,N21. They are assumed to be related
the following transformations:

u l̄ &5
1

AN
(
j 50

N21

ei2p j l /Nu j &, ~2.1a!

u j &5
1

AN
(
l 50

N21

e2 i2p j l /Nu l̄ &. ~2.1b!

Then, the position and momentum operatorsq̂ and p̂ can be
defined as the eigenoperators of these two vector sets
spectively, by

q̂u j &5
j

N
u j &, j 50, . . . ,N21, ~2.2a!

p̂u l̄ &5
l

N
u l̄ &, l 50, . . . ,N21. ~2.2b!

It is worth noting that the operator pairq̂,p̂ thus defined does
not obey the Heisenberg commutation rule but rather
following Weyl commutation rule@19#:

ei2pnp̂ei2pmq̂5ei2pmn/Nei2pmq̂ei2pnp̂, ~m,n!PZ 2.
~2.3!

As to the dynamics of a density operatorr̂, if the unitary
time evolution operatorŜ corresponding to the classical ma
has been obtained in some way, then the time evolution or̂
can be described by

r̂k115Ŝr̂kŜ†, ~2.4!

where k and k11 represent two successive integral time
Obviously, it would be difficult in practice to evolve th
quantum ensemble by using this formula directly, especia
for the cases in whichN is large. To facilitate the calculation
a key technique used in this paper is to make good use o
quantum characteristic function of the density operatorr̂,
which is defined as@11–13#

w~m,n!5Tr@ r̂Û~m,n!#, ~m,n!PZ 2, ~2.5!

where Û(m,n)5eipmn/Nei2pmq̂ei2pnp̂ acts as a phase-spac
displacement operator, i.e.,
8-2
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Û~m,n!u j &5eipm(2 j 2n)/Nu@ j 2n#N&, ~2.6a!

Û~m,n!u l̄ &5eipn(2l 1m)/Nu@ l 1m#N&. ~2.6b!

Here @ #N denotes the congruence moduloN. It is easy to
verify that the symmetries ofÛ(m,n),

Û~m1N,n!5~21!nÛ~m,n!,

Û~m,n1N!5~21!mÛ~m,n!, ~2.7a!

Û†~m,n!5Û~2m,2n! ~2.7b!

can be passed on to the quantum characteristic func
w(m,n), i.e.,

w~m1N,n!5~21!nw~m,n!,

w~m,n1N!5~21!mw~m,n!, ~2.8a!

w!~m,n!5w~2m,2n!. ~2.8b!

From Eq. ~2.8a!, one realizes that althoughw(m,n) has a
period of 2N for both m andn, only N2 values on a square
N3N lattice are independent. This can also be verified
rectly by the inverse transformation between the density
erator and its quantum characteristic function,

r̂5
1

N (
m5m0

m01N21

(
n5n0

n01N21

w~m,n!Û†~m,n!. ~2.9!

This means that the characteristic functionw(m,n) on an
arbitrary N3N square lattice can completely describe
quantum ensemble (m0 and n0 are two arbitrarily chosen
integers!. We emphasize this fact because it is crucially i
portant for our later discussions on the Wigner function.

Now let us turn to the cat map. The classical dynamics
the cat map can be derived from the model of a periodic
kicked one-dimensional particle with unit mass and it has
Hamiltonian@18#

H5
1

2
p21

K

2
q2d1~ t !, ~2.10!

whered1(t) represents a sequence ofd functions with period
of unit time. Integrating the equations of motion deriv
from this Hamiltonian over a unit time from just before th
kth kick to just before the (k11)th kick, and imposing pe-
riodic boundary conditions to bothq andp to make the phase
space a unit torus, one obtains

S qk11

pk11
D 5S 12K 1

2K 1D S qk

pk
D ~mod 1!. ~2.11!

If uK22u.2, this map is an Anosov diffeomorphism on
2-torus. The motion generated by such a map is stron
chaotic, and in particular is mixing and ergodic. The Arno
cat map that we address later corresponds toK521 @10#.
05620
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From the quantum counterpart of the Hamiltonian giv
above, the unitary time evolution operator corresponding
the classical map can be integrated out exactly, which yie

Ŝ5e2 ipNp̂2
e2 ipNKq̂2

~2.12!

with two factors being responsible for the kick and the fr
motion between two successive kicks, respectively. Afte
straightforward calculation by using Eq.~2.4!, the time evo-
lution of the quantum characteristic function generated
this unitary evolution operator can be given by

wk11~mk11 ,nk11!5wk~mk ,nk! ~2.13!

with

S mk11

nk11
D 5S 1 K

21 12K D S mk

nk
D ~2.14!

for evenN, which is the case being dealt with in this pape
Due to the periodic conditions~2.8a!, the iteration formulas
~2.13! and~2.14! can be constrained on any 2N32N square
lattice. Sincew(m,n) is actually permuted on this finite lat
tice, it must return to its initial state after a finite number
iterations. This period, denoted in this paper bya(N), is
known as the quantum period of the system@16#. Research
reveals thata(N) has a strong dependence on the numb
theoretical nature ofN @20#.

Comparing with Eq.~2.4!, the evolution formulas~2.13!
and ~2.14! have an apparent advantage in that only integ
operations are involved. Consequently, much less mem
and time are needed when the numerical calculations
implemented. This is one of the reasons why we resort to
quantum characteristic function in our investigations. In S
IV, one may find that, based on these two formulas,
numerical calculations can be simplified further as a con
quence of coarse-graining.

III. WIGNER FUNCTION

The Wigner function is one of the most useful tools
investigate the motion of a quantum ensemble in ph
space. In this section, we will present an appropriate defi
tion of the Wigner function for the systems whose kinem
ics were constructed in the preceding section.

From its conventional definition, a straightforwar
Wigner function for the linear quantum maps on a two
mensional torus has been given by Hannay and Berry~HB!
@16#. It has period 1 in both theq and p directions, and
nonzero values on a 2N32N lattice in the phase torus. In
fact, this Wigner function, referred to asWHB(q,p) in the
following, can be expressed as the Fourier transformation
the quantum characteristic function on a 2N32N square lat-
tice in the Fourier dual space of the torus, i.e.,

WHB~qj ,pl !5
1

4N2 (
m,n50

2N21

w~m,n!e2 i2p(mqj 1npl ) ~3.1!

with (qj ,pl)5( j /2N,l /2N), ( j ,l )PZ 2. From Eq.~2.8a!, we
know that, for 4N2 terms ofw(m,n) appearing in the right-
8-3
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JIAO WANG, C.-H. LAI, AND YAN GU PHYSICAL REVIEW E 63 056208
hand side of this definition, onlyN2 of them are independen
this infers that 4N2 spikes ofWHB(qj ,pl) on the phase torus
are associated in sets of four as already having been po
out by Hannay and Berry@16#. This is in fact a shortcoming
because those redundant spikes cannot provide any new
formation, and even worse, they make the physical mean
of the Wigner function too vague to understand@17#.

As suggested by Eq.~2.9!, a quantum characteristic func
tion defined on anN3N square lattice is sufficient for de
scribing a quantum ensemble. This fact implies that it is
superfluous terms ofw(m,n) in definition ~3.1! that cause
the trouble, and therefore it is preferable to carry out
summation in the right-hand side of Eq.~3.1! only within an
N3N square lattice~denoted asL) in the Fourier dual space
instead. This consideration leads straightforwardly to a re
fined Wigner function,

W~qj ,pl !5
1

N2 (
(m,n)PL

w~m,n!e2 i2p(mqj 1npl ). ~3.2!

Obviously, this new version of the Wigner function defin
here contains all the necessary information needed to spe
a quantum ensemble, and therefore it can serve as a com
description of it. In addition, one can easily deduce that it
the projection nature

(
l 50

N21

W~qj ,pl !5^ j ur̂u j &, j 50, . . . ,N21, ~3.3a!

(
j 50

N21

W~qj ,pl !5^ l̄ ur̂u l̄ &, l 50, . . . ,N21 ~3.3b!

expected for a Wigner function. This further supports t
validity of the new definition. Periodic conditions

W~qj11,pl !5W~qj ,pl11!5W~qj ,pl ! ~3.4!

are satisfied as well, and as a result (qj ,pl) can be restricted
on the N3N phase lattice $(qj ,pl)5( j /N,l /N); j ,l
50, . . . ,N21%, which will be referred to as the Wigner la
tice in the following.

Compared with its conventional version~3.1!, the advan-
tage of this redefined Wigner function is that the redund
phase-space points that are not required by the positio
momentum wave-function descriptions are no longer
volved. The Wigner lattice can therefore be viewed as
05620
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quantum counterpart to the classical phase torus. This
makes the physical meaning of this definition more clear

On the other hand, from Eq.~2.8b! one knows that
W(qj ,pl) is real if theN3N lattice L is symmetric about
the origin. Therefore, for oddN one can generate a rea
W(qj ,pl) by just specifying theL used in Eq.~3.2! as the
symmetric one whose lower left vertex is located at„2(N
21)/2,2(N21)/2…. But for evenN, this effort fails and thus
W(qj ,pl) is in general complex. A better choice in this ca
is to locate the lower left vertex ofL at (2N/2,2N/2), so
that the image part ofW(qj ,pl) only comes from the contri-
butions of those terms ofw(m,n) along the left and the
lower edges ofL. However, since in both cases the values
W(qj ,pl) are not non-negative–definite,W(qj ,pl) cannot
serve as a phase space probability distribution directly.
far as this point is concerned, our viewpoint is that being r
but possibly negative~odd N) is by no means better tha
being complex~evenN). Fortunately, it turns out that this
defect ofW(qj ,pl) can be remedied by coarse-graining it
some appropriate ways. For example, the corresponding
simi distribution ofW(qj ,pl) is found to be actually every
where nonnegative for both odd and evenN, at least under
the conditionN@1, as we will show in the next section.

In the rest of this section, we would like to give the e
plicit expression of the one-step propagator of this new
defined Wigner function for Arnold’s cat map (K521). For
the conventional Wigner function, the study by Hannay a
Berry has revealed that for a linear map,WHB is just carried
along by the classical map on a 2N32N phase lattice, and
no quantum effect is found to be manifested explicitly in th
simple picture. In contrast, the following results will sho
that the propagation ofW(qj ,pl) seems to be more compli
cated and exhibits impressive quantum effects.

Assume that after one evolution step the Wigner funct
can be expressed as

Wk11~qj 8 ,pl 8!5 (
j ,l 50

N21

Wk~qj ,pl !P~qj 8 ,pl 8 ;qj ,pl !,

~3.5!

where P(qj 8 ,pl 8 ;qj ,pl) represents the contribution of th
spike located at (qj ,pl) to that at (qj 8 ,pl 8) after one itera-
tion; then by substituting Eq.~3.2! into both sides of this
equation and by making use of Eqs.~2.13! and ~2.14!, one
obtains
P~qj 8 ,pl 8 ;qj ,pl !5
1

N2 (
(m,n)PL

l~m,n!ei2p[m(qj 2qj 81pl 8)1n(pl22pl 81qj 8)] ~3.6!

with

l~m,n!5H ~21!m1n if n2s<m<2n2s or 2n1s,m,n1s;

~21!n if n.m1s or n<m2s;

1 if 2n2s,m<2n1s.
S s5

N

2 D ~3.7!
8-4



ac
e

a
th

te
h

f 0
tio
r
th

a
a

n
las
re

o
g

in
f
sic

e
r-
o
pa
ni
hi
tru
lv
in

ns

tor
-

in

ua-

f
e
he

m-
en

red

y

ne

ERGODICITY AND SCARS OF THE QUANTUM CAT MAP . . . PHYSICAL REVIEW E 63 056208
In Fig. 1, we show forN548 and (qj ,pl)5(0.25,20.25)
the real part of the functionP(qj 8 ,pl 8 ;qj ,pl) as an example
to see how a spike fixed at (qj ,pl) will be propagated on the
Wigner lattice~please note that the origin of the phase sp
is located at the center in this figure and in all subsequ
figures in which phase space is concerned!. Since the maxi-
mum of the imaginary part is quite small compared with th
of the real part (0.02 versus 0.5), Fig. 1 reflects almost all
main details of the propagator.

In this figure, we can see three prominent peaks situa
exactly on three vertices of a right triangle whose two rig
sides are parallel to the axes and have the same length o
The highest peak has a strength of 0.5, and its loca
(0.25,0) is exactly where (qj ,pl) would be mapped unde
the classical map. The other two lower peaks, having
same height of 0.25, are situated at (20.25,0) and (20.25,
20.5), respectively; they have no classical analog and
thus responsible for the quantum character of the cat m
Straightforward analysis shows that if (qj ,pl) is shifted, the
pattern ofP(qj 8 ,pl 8 ;qj ,pl) will not change but will suffer a
corresponding displacement.

Further investigations of Fig. 1 reveal that there are ma
deep valleys in the immediate neighborhood of two nonc
sical peaks, which lead to noticeable fluctuation structu
The wavelength of these structures is of order\. Since the
Wigner function of a wave packet has a minimum width
order A\, the nonclassical contributions from neighborin
points will counterbalance each other greatly during the
tial evolving stage. This explains why the propagation o
wave packet resembles that of the corresponding clas
phase density before the quantum coherence appears@21#.

IV. COARSE-GRAINING

As was illustrated in the preceding section, the Wign
function itself is generally not non-negative-definite. In o
der to appreciate its real significance, one has to resort t
coarse-grained form to obtain an appropriate phase-s
representation. On the other hand, since coarse-grai
would smooth out all high wave-number undulations, t
procedure makes it possible for various phase-space s
tures specific to the quantum motions to manifest themse
in a clear way. In addition, as fewer wave numbers are

FIG. 1. The real part of the one-step propagator of the Wig
function for the cat map withN548. The initial spike is at
(qj ,pl)5(0.25,20.25).
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volved, time and memory used in the numerical calculatio
can be reduced further.

For simplicity, we use a Gaussian coarse-graining fac
and denote its width bye with A\<e!1. Then the coarse
grained Wigner function can be written as

We~qj ,pl !5C (
j 8,l 852`

`

e2[(qj 82qj )
21(pl 82pl )

2]/ e2
W~qj 8 ,pl 8!,

~4.1!

whereC is an appropriate normalizing factor. However,
practical calculations, it is more convenient to expressWe in
terms of the quantum characteristic function

We~qj ,pl !5
1

N2 (
(m,n)PL

we~m,n!e2 i2p(mqj 1npl ) ~4.2!

and resort to the approximate relation@13#

we~m,n!'e2p2e2(m21n2)w~m,n! for

~m,n!PL, Ne@1. ~4.3!

The Gaussian coarse-graining factor appearing in this eq
tion acts as a wave filter, which causes the value ofwe(m,n)
to be negligible for (m,n) outside a smaller central region o
L whose radius depends only on the coarse-graining size
and does not grow asN is increased. As a consequence, t
summation on the right-hand side of Eq.~4.2! can be carried
out only within this region, which provides an essential si
plification to the numerical calculations, especially wh
largeN ~or the deep semiclassical limit! has to be dealt with.

Now we show that whenN@1 ande>A\, We(qj ,pl) is
essentially everywhere non-negative. Lettingu j &[u@ j #N&,
j PZ; whenN@1, we may define a coherent state cente
at (qj ,pl) as

uc&5S 2

ND 1/4

(
j 852`

`

e2p[( j 82 j )22 i2l ( j 82 j )]/Nu j 8&. ~4.4!

Its Wigner function has the form

Wc~qj 8 ,pl 8!5
2

N
e22pN[(qj 2qj 8)21(pl2pl 8)2] . ~4.5!

Substituting it into Eq.~4.1! and lettinge5A\, we have

WA\~qj ,pl !5 (
j 8,l 852`

`

Wc~qj 8 ,pl 8!W~qj 8 ,pl 8!

5
1

N
^cur̂uc&

>0. ~4.6!

Here WA\ is actually the Husimi distribution of the densit
operatorr̂ @22#.

r

8-5



io
ur
re
b

et
re

flu
tu
ia

se

o
u
en
if-
y
e

m

ur
he
th

ul
n

on

or

r

te
ical

he
in-

d the
is
ical
ilib-
ing
ent

ntum
age
ions
rly
ap-
via-

be-
ce

own
l
, a

r-
icts

itive

e

The

al
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Having appropriately defined a phase-space distribut
we are now in a position to study the phase-space struct
imprinted by the quantum motions, which is expected to
veal the localization effect of the quantum chaos caused
quantum coherence. We will use a Gaussian wave pack
a probe and locate its centroid at various positions of inte
~e.g., near or on a particular classical periodic orbit! to study
how the long-time behavior of a quantum ensemble is in
enced by the corresponding classical phase-space struc
The quantum characteristic function for such an init
Wigner function has the form

w0~m,n!5ei2p(mqj 1npl )e2a2p2(m21n2) for

~m,n!PL, N@1. ~4.7!

Here (qj ,pl) is the center position of the probe in pha
space anda is its width in bothq andp coordinates.

Our numerical investigations on the localization effect
the quantum cat map consist of two parts. We will first foc
our attention on the time evolution of the coarse-grained
tropy. In order to facilitate the numerical calculations, a d
ferent expression for nonequilibrim entrop
S52KB ln(Tr@ r̂2#), which was first suggested by Prigogin
@23#, is used. Setting the Boltzmann constantKB51, the
coarse-grained entropy of a quantum ensemble of a cat
is @13#

Se52 lnS (
(m,n)PL

uwe~m,n!u2D
52 lnS (

j ,l 50

N21

uWe~qj ,pl !u2D 22 lnN. ~4.8!

Besides that, we will also study the phase-space struct
left by a wave packet during its evolutions by calculating t
time average of the coarse-grained Wigner function over
whole quantum period, i.e.,

W̄e~qj ,pl !5
1

a~N! (
k50

a(N)21

We
k~qj ,pl !. ~4.9!

V. NUMERICAL RESULTS

A. Quantum coarse-grained entropy„QCE…

In this subsection, we show some of the numerical res
of the time evolutions of the coarse-grained entropy a
study its semiclassical behavior. By using the periodic c
ditions ~2.8a! and the recurrence formulas~2.13! and~2.14!,
the QCE at timek can be expressed as

Se
k52 lnS (

(m0 ,n0)PL
e22e2p2([mk] 21[nk] 2)uw0~m0 ,n0!u2D ,

~5.1!

where (@mk#,@nk#)PL, @mk#5mk , and @nk#5nk(modN).
In Fig. 2, we show several time curves of QCE f
e50.000 04 andN5105, 106, and 43106, respectively. The
initial phase-space distribution, whose quantum characte
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tic function has the form of Eq.~4.7! with a50.001 261 6
~noting that for the caseN5105 we havea5A\, which
means that the initial distribution describes a coherent sta!,
is Gaussian. The evolution of the corresponding class
coarse-grained entropy is also shown.

In this figure, we can see that the time evolution of t
QCE undergoes two stages. In the relaxation stage, it
creases in the same way as its classical analog does, an
ascending trend will not stop until a critical entropy value
approached. After that moment, however, while the class
coarse-grained entropy goes on increasing up to the equ
rium Seq and stays there invariably, the QCE stops increas
and begins to show an irregular sequence of dips of differ
sizes thereafter.

The appearance of the dip sequence caused by qua
coherence in the time curve of QCE after the relaxation st
reveals a significant difference between the quantum mot
and the classical mixing dynamics. In order to show clea
how this difference disappears as the quantum motion
proaches its classical limit, we use the time-averaged de
tion of the QCE from that of its classical counterpartDS

5Seq2S̄e as a measure and investigate its semiclassical
havior. As we do so, we find that for fixed initial phase-spa
distributions, the entropy differenceDS exhibits a strong de-
pendence on the number-theoretical nature ofN, just like
many other characters of the quantized cat map have sh
@20#. In order to reveal the trend ofDS in the semiclassica
limit that underlies these number-theoretical fluctuations
natural method is to smooth the curve (DS versusN) out by
averagingDS over a certain neighboring range ofN for ev-
ery sample point that resides on it, as was done in Ref.@13#.
Here we would like to point out that these numbe
theoretical fluctuations can also be eliminated if one restr
the investigation along some specified sequences ofN. Such
a sequence can be generated by simply multiplying a pos
integer N0 with a prime b successively, i.e.,Nl5N0bl ,
l 51,2, . . . . InTable I, we show the sequence ofDSNl

for an

initial Gaussian distribution with widtha50.05, and from it
we find that asl increases,DSNl

descends linearly withl 21,

i.e., DS}\ ~this result is somewhat different from that w
obtained by averagingDS over N, which indicatesDS
}\0.72 @13#!.

FIG. 2. Coarse-grained entropy for the quantum cat map.
initial Gaussian distribution is centered at~0,0! with a
50.001 261 6,e50.000 04, andN5105 ~dot-dash line!, 106 ~solid
line!, and 43106 ~dotted line!. The dashed line gives its classic
counterpart.
8-6
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ERGODICITY AND SCARS OF THE QUANTUM CAT MAP . . . PHYSICAL REVIEW E 63 056208
Furthermore, we find for large enoughl that all the dips in
the time curve of QCE will be found to appear again in t
next curve with a larger value ofl, with only the times at
which they appear undergoing a change. More interest
the identified dips appearing in different time curves of QC
share the same phase-space distributions, too. On the
hand, no new dips are found to emerge asl increases further
hence the result observed above can be ascribed to the l
dependence of the quantum period onl when l is large
enough~Table I!.

B. Scars and antiscars in phase space

By using the coarse-grained Wigner function discus
above, we can conveniently investigate the motion of a
ensemble in which we are interested in the phase space.
observation of interest is how an initial Gaussian distribut
~IGD! evolves in the phase-space. Such an observation
appeared in Ref.@18# with a differently defined phase spac
distribution, and it impressed us due to the recurrence of
initial distribution as well as the complicated phase sp
structure exhibited in the transient equilibrium stage durin
quantum period. In order to figure out the quantum locali
tion nature of the cat map, we will focus our attention he
on the time average of the coarse-grained Wigner func
W̄e(qj ,pl) instead. Since it is defined on the discretiz
phase torus, for the purpose of illustrating the quantu
classical analogy, it is preferable to introduce a density d
tribution W(q,p) on the entire torus, which is uniform o
each phase cell and is related to the coarse-grained Wi
function on the discretized phase torus by

W~qj ,pl !5N2We~qj ,pl !. ~5.2!

As the equilibrium distribution on the phase torus is no
expressed asWeq(q,p)51, our attention will be focused on
the time-averaged quantityDW̄(q,p)5W̄(q,p)21, which
could reflect the deviation from the classical ergodicity. A
of patterns ofW̄ with different N and different IGD for the
Arnold cat map have been investigated. Although major p

TABLE I. The dependence on Planck’s constanth51/N of the
deviation of the time-averaged quantum coarse-grained entropy
the time-averaged coarse-grained Wigner function from their c
sical counterparts. Initial Gaussian distribution is located at~0,0!
with a50.05, e50.035. Three sample points on the phase to

used for evaluatingDW̄(q,p) are ~0,0!, (20.5,20.5), and
(0.2,0.2).

N a(N) DS DW̄(0,0) DW̄(20.5,20.5) DW̄(0.2,0.2)

300 300 0.24091 1.93061 20.05909 20.10665
600 300 0.19428 1.68646 20.11526 20.10534
1200 300 0.17525 1.57584 20.10074 20.08977
2400 600 0.11365 0.93976 0.10147 20.06217
4800 1200 0.06089 0.49055 0.07140 20.02984
9600 2400 0.03052 0.24642 0.03686 20.01532
19200 4800 0.01526 0.12321 0.01843 20.00766
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terns ofW̄ resulting from the numerical calculations displa
complicated phase-space structures, we are able to recog
them as a superposition of two basic patterns, i.e., the
prints of the initial distribution and the quantum scars~anti-
scars!. In the following, we shall describe the interesting fe
tures of these two types of patterns in detail.

1. The imprints of the initial distribution (IOID)

Since the motion of the quantum cat map is periodic, i
natural to expect IOID in the time-averaged phase-space
tribution, especially when the quantum perioda(N) is not
too large. In Fig. 3, some typical patterns of IOID wit
Gaussian initial distributions are shown. Figures 3~a! and
3~b! are for a three-dimensional plot ofW̄ and its contours,
respectively, withN53998, a(N)5333. The IGD is cen-
tered at~0,0!, which is the fixed point of the classical ma
From these two figures, a prominent peak at the fixed po
can be found, and away from this point,W̄ remains high
along its stable and unstable manifolds. There is a sim
argument that explains this phenomenon. In fact, the mo
of a quantum ensemble is similar to that of its classical co
terpart before the characteristic logarithmic time is reach
@21#. During this stage, the IGD is squeezed along the sta
manifold and stretched along the unstable manifold, and
effect would cause a considerable accumulation ofW̄ along
the unstable manifold as well as at the fixed point. This
also what happens to the stable manifold just before a qu
tum period elapses, but in the reverse time order. It is evid
that such a mechanism is also effective in cases in which
IGD is located at other places. Noting that the time-avera
Wigner distribution is just a linear combination of th
Wigner functions of the quasienergy eigenstates~see Sec.
VI !, this argument provides also a guide to the interpretat
of the same phenomenon that has been observed in the s
of the scars that appear in the eigenstates@24#.

When the IGD is moved away from the fixed point, th
patterns of IOID change accordingly. Figure 3~c! shows the
contours ofW̄ when the center of the initial Gaussian
moved to an arbitrarily chosen point (21/6,222/153). In
this plot, besides the peak at the initial point, one can fi
clearly the imprints left by the first three iterations as well
that left by the last three iterations before the ensemble
tribution returns to its initial state. In our numerical calcul
tions, we also found another type of IOID that appears o
when the motion of the quantum cat has an even period.
such quantum cats, the initial distribution may reappear a
the half-quantum period at its symmetrical position with r
spect to the origin~0,0!. Figure 3~d! shows an example o
this type of IOID when the initial Gaussian is located a
(21/6,222/153) withN52554 anda(N)5426.

2. Scars and antiscars

Apart from the above-mentioned IOID, most patterns
W̄ may actually display additional peaks and dips alo
some classical short periodic orbits. These phase-space s
tures are caused by the quantum coherence during the e
librium stage@18,13# and could be recognized as scars a
antiscars~here the readers should not be confused with
examples shown in Fig. 3, which happen to be those

nd
s-

s
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JIAO WANG, C.-H. LAI, AND YAN GU PHYSICAL REVIEW E 63 056208
FIG. 3. Time-averaged ensemble density distributionsW̄(q,p)
with a50.024 ande50.021. ~a! A three-dimensional plot forN

53998 @a(N)5333# and IGD at~0,0!. ~b! The contours forW̄
shown in~a! ranging from 0.99 to 1.09 with space 0.0125.~c! and

~d! Contours ofW̄ from 1 to 1.4~spacing size 0.04) for the IGD a
(21/6,222/153) with N53998 andN52554 @a(N)5426#, re-
spectively.
05620
which these structures are greatly depressed and henc
ideal for illustrating the IOID!. Although it is not an easy
task to determine exactly whether a certain classical o
will be scarred or not under the given conditions, som
simple rules are strongly suggested by the numerical d
For example, one of our findings is that when the IGD
located at the fixed point, all of the scarred classical perio
orbits will be exactly organized to form some of the invaria
sublattices of the Wigner lattice. It is interesting to note th
the concept of an invariant sublattice plays an important r
also in the mathematical study of the classical periodic or
of the cat map by using the ideal theory in quadratic fie
@25#. For the convenience of the following illustrations,
Fig. 4~a! two invariant sublattices of the Wigner lattice fo
N5686 are plotted. They are I 15$(q,p)uq5 j /2,
p5 l /2, j ,l 521,0% and I 25$(q,p)uq5 j /7, p5 l /7, j ,l 5
23, . . . ,3%, respectively. The former consists of the fixe
point and a period-3 orbit that passes through (20.5,20.5)
~denoted asO1), while the latter consists of the fixed poin
and six period-8 orbits.

In Fig. 5~a!, we show a three-dimensional plot ofW̄ for
N5686, a(N)51176 witha50.024, e50.021. The IGD
is centered at the fixed point (0,0). In this plot, besides
highest peak at the fixed point~part of it serves as IOID!, W̄
is also peaked to some lower heights along several o
classical short periodic orbits that occur on the Wigner l

FIG. 4. ~a! Two invariant sublattices forN5686: I 1 ~dot and
crosses! and I 2 ~dot and circles!. ~b! Periodic orbits of the cat map
up to period 4. Dot for the fixed point, squares for two period
crosses for four period-3, and circles for ten period-4 orbits, resp
tively.
8-8
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ERGODICITY AND SCARS OF THE QUANTUM CAT MAP . . . PHYSICAL REVIEW E 63 056208
tice. In Fig. 5~b!, we plot the contours ofW̄ ranging from 1
to 1.6, which shows these scars clearly. From this plot,
can recognize two groups of periodic orbits, one contain

the period-3 orbitO1 that strongly scarsW̄ and the other one

containing six period-8 orbits that scarW̄ relatively weakly.
Together with the fixed point, the former forms the invaria
sublatticeI 1 and the latter formsI 2 @see Fig. 4~a!#, and in
each sublattice it seems the scars along those orbits that
the same period have the same height. This striking phen
enon, in which the periodic orbits scarringW̄ are organized
into invariant sublattices of the Wigner lattice, is also o
served for all other values ofN that were investigated, an
therefore it is believed to be a general feature.

FIG. 5. ~a! Three-dimensional plot ofW̄ for N5686 @a(N)
51176#. The IGD is at (0,0) witha50.024 ande50.021. Its con-
tours ranging from 1 to 1.6 with step size 0.075 are shown in~b!
and those from 0.73 to 0.92 with step size 0.0317 in~c!.
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A careful observation of the numerical data reveals t

W̄ also takes the minima around some classical short p
odic orbits. These valleys are known as antiscars for qu

tum eigenstates@9#. Because the absolute value ofDW̄ is

usually quite small forW̄,1, we have to show these antis

cars specifically. In Fig. 5~c!, the contours ofW̄ from its
minimum to near 1 (0.7320.92) are shown, and from it on
can recognize the antiscarred periodic orbits almost at
sight ~the minima on the middle lines between the stable a
unstable manifolds of the fixed point should be regarded
part of IOID!. According to the depth of the antiscars gene
ated, they can be roughly classified into three groups:
period-2, two period-4, and four period-3 orbits@compare
with Fig. 4~b!#. An interesting fact is that none of these orb
lives on the Wigner lattice at the present value ofN. This is
also a general feature.

One may notice that the fixed point is the common e
ment of all sublattices of the Wigner lattice. So it is reaso
able to conjecture that some of these sublattices be
scarred in the above case may have a close connection
the fact that the IGD is actually placed on one of their poin
This conjecture can be easily tested by checking whethe
not a scarred sublattice will survive if the IGD is shifted
the other points. The answer is positive. As an example,
keep the other conditions used in Fig. 5 unchanged but s
the centroid of the IGD to (2/7,2/7) of a period-8 orbit inI 2

and plot the contours ofW̄ in Fig. 6~a!. We find that apart
from IOID, the whole invariant sublatticeI 2 generates scar
again. An evident difference of Fig. 6~a! compared with Fig.
5~b! is that the scarred sublatticeI 1 that once appeared in th
latter now vanishes. Based on the above conjecture, one
attribute this to the fact that the IGD in this situation is qu
apart from theI 1 sublattice. On the contrary, if the IGD sit
on O1, then I 1 ~but not I 2) will be expected to be scarre
instead. This has been easily verified by numerical calcu
tion.

It is also of great interest to know what will happen if th
IGD is shifted to the short periodic orbits that would antisc
W̄ when it is centered at the fixed point. Since these perio
orbits actually do not belong to the Wigner lattice, the w
they act onW̄ must be different from that presented in th
above paragraphs. A general simple rule is also found un
this condition from extensive numerical investigations. As
illustration, the reader is referred to Fig. 6~b!, where the con-
tours ofW̄ for the IGD being set at (1/3,1/3) of a period-
orbit, which has been recognized from the antiscars ofW̄ in
Fig. 5~c!, are presented. In addition to the IOID along th
period-4 orbit, there is an accompanying period-12 orbit t
weakly scarsW̄. An interesting correlation between thes
two scarred orbits is that their relative position in pha
space is the same as that of the fixed point and periodic o
O1 ~which forms the invariant sublatticeI 1). In other words,
the points of the accompanying period-12 orbit can be
vided into four groups; the three points in each group
gether with another one coming from the period-4 orbit c
form a square of the same size ofI 1. We find that this con-
nection is not changed when the IGD is moved to the ot
8-9
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JIAO WANG, C.-H. LAI, AND YAN GU PHYSICAL REVIEW E 63 056208
short periodic orbit that lives in the meshes of the Wign
lattice.

As a brief summary of this subsection, the short perio
orbits can be classified into different sets. Each set will g
erate scars simultaneously when the IGD is located on on
its points. We have two distinctive categories of these s
Those in the first category can be identified with the inva
ant sublattices of the Wigner lattice, and those in the sec
category contain two short periodic orbits coupled throug
square. A common important feature of all of these set
that they have a certain stability when they are scarred. T
means that even if the IGD is not set on them exactly, th

FIG. 6. Contours ofW̄ for N5686, a50.024, ande50.021
with the IGD at ~a! (2/7,2/7) ~1 to 1.6 and 0.075 spaced!, ~b!
(1/3,1/3) ~1 to 1.7, 0.077 spaced!, and~c! (2/71Dq,2/71Dp) with
Dq5Dp50.01 (1 to 1.5 and 0.063 spaced!.
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can still manifest themselves clearly@Fig. 6~c!#. In fact, as
the IGD is gradually moved away from one point of such
set, say a scarred invariant sublattice, one may find tha
the first stage this scarred sublattice will survive well but t
heights of the scars on it usually decrease. If another se
approached by the IGD during this process, then at the
W̄ will be taken over by the approached one. As to the
termediate states, sometimes a strong competition betw
the two opponents can occur so that it is difficult to reco
nize any one of them from the mingled structures ofW̄. In
spite of such a complication, these sets can serve perfect
the backbones of the scars ofW̄ in general cases, and there
fore they are of great importance for studying the features
the phase-space structures resulting from the quantum co
ence of the cat map.

Finally, it should be noted that, changing the parametee
and a usually alters the sizes of the scars, antiscars,
IOID. If their values are decreased, finer scars and antis
for longer periodic orbits usually will emerge, but no fres
clues have been deduced from them as to the ways in w
they are organized.

VI. DISCUSSION

One of the unexpected results in our numerical investi
tions on the phase-space scars is that scarring for the q
tum cat map appears not to be an individual behavior o
single orbit, but rather a collective one arising from som
related short periodic orbits. Since the invariant sublatti
for a given N3N Wigner lattice depend strongly on th
number-theoretical nature ofN, it is natural to expect that the
time-averaged ensemble distributionW̄(q,p) closely related
to the invariant sublattices will do so as well.

On the other hand, from Eq.~4.8! we see that the QCE
gives an overall measure of the deviation ofW(q,p) from
the uniform distribution. Thus corresponding to each dip
the time curve ofSe ~Fig. 2!, there must be a strong loca
ization in the time evolution ofW(q,p). As a result, the
decreasing of the time-averaged difference of QCE asN is
increased~Table I! implies that DW̄(q,p) should vanish
gradually as the semiclassical limit is approached. In orde
get rid of the peculiar number-theoretical dependence
W̄(q,p) on N, we can again restrict ourselves to the s
quence ofN, i.e.,Nl5N0bl ,l 51,2, . . . with b a prime, as we
did in the preceding section. In Table I, the values
DW̄Nl

(q,p) at three different representative phase points

a sequence ofNl are shown. The numerical results sho
excellently that in the semiclassical regime

DW̄Nl 11
~q,p!'

1

b
DW̄Nl

~q,p!, ~6.1!

i.e., the intensities of both the quantum scars~antiscars! and
the IOID decrease linearly with the Planck constant for
cat map. It should be noted that the result obtained here d
not contradict the common opinion that the intensities of
scars exhibited in the eigenstates of a chaotic system ca
determined by classical dynamics and therefore should
8-10
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ERGODICITY AND SCARS OF THE QUANTUM CAT MAP . . . PHYSICAL REVIEW E 63 056208
independent of the Planck constant@26#. In fact, in this pa-
per, the semiclassical limit is implemented with a fixed in
tial phase-space distribution, which should be described
different density operators when the Planck constant
changed. We think that in order to get some physical insig
into the semiclassical limiting properties, it is important
consider a fixed physical state rather than a fixed mathem
cal state.

Since, up to now, most efforts on scars have concentr
on the study of energy eigenstates, an interesting ques
that remains to be answered is the relationship between
scars we have observed in the time-averaged ensemble
tribution of the quantum cat map and those exhibited in
quasienergy eigenstates. Here is a simple calculation
gives the answer.

Let uf r&,r 51, . . . ,N be a complete set of the quasie
ergy eigenstates of the time evolution operatorŜ, and let
eiur,r 51, . . . ,N be the corresponding eigenvalues. Then
eigenangleu r can only take one of the followinga(N) pos-
sible values:

bu5
2pu1gN

a~N!
, u51, . . . ,a~N!, ~6.2!

wheregN is a constant that depends only onN @16#. Now, for
any given initial ensemble distribution, one can always c
struct an orthogonal set of quasienergy eigenstatesuf r&,r
51, . . . ,N8 (N8<N) with distinct eigenanglesu r such that
its density operator has the form

r̂05 (
r ,s51

N8

r rs
0 uf r&^fsu. ~6.3!

By making use of Eq.~2.4!, the time-averaged density op
erator can be expressed as

r̄̂5
1

a~N! (
k50

a(N)21

r̂k5(
r 51

N8

r rr
0 uf r&^f r u, ~6.4!

from which we have
,

cs
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W̄~qj ,pl !5(
r 51

N8

^f r ur̂0uf r&Wr~qj ,pl ! ~6.5!

by straightforward application of Eq.~3.2!. HereWr(qj ,pl)
denotes the Wigner function of the eigenstateuf r&. It tells
that W̄(qj ,pl) is just a linear combination of the Wigne
functions of the eigenstates. As a result, the scars cause
the classical short periodic orbits on each eigenfunction w
accumulate to form the structures ofW̄(q,p), which we have
shown in our figures.

VII. SUMMARY

We have presented a detailed study of the quantum
tion of an ensemble of Arnold’s cat map in the context
statistical mechanics. By investigating the evolution of t
quantum ensembles, we found that quantum coherence m
fests itself through an irregular sequence of dips in the ti
curve of coarse-grained entropy after the system reaches
transient equilibrium state. Moreover, we find that the dev
tion of the time average of the quantum coarse-grained
tropy from its classical counterpart decreases linearly with\
when the semiclassical limit is taken by letting\
51/(2pN0bl) with b a prime andl→`.

Meanwhile, we find that classical short periodic orb
have strong influences on the time-averaged Wigner func
by scarring and antiscarring the latter.~Although antiscars
have been predicted theoretically in Ozorio de Almeid
book @9#, reports on its direct observation are rare in pub
cations, so our observation provides numerical eviden!
Furthermore, these short periodic orbits usually occur in s
rather than individually. Finally, we have shown that t
deviation of the time average of the coarse-grained Wig
function from its classical counterpart also decreases line
with \ in the semiclassical regime along the abov
mentioned sequence of\.
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